QQ网名大全

数理易学的第四节 先天易二进位制的两种典型观点

一、王夫之斥先天易沦为算士铢积寸垒的小术
现代人对先天易卦衍生序的讨论都尽量限制在哲学范围之内。而从我们上面的讨论中可知,先天易卦符号首先是数的符号,然后在此基础上讨论包括哲学在内的其它问题。先天易符号二进位制数结构对明清学者来说是简单的事实。他们分歧的焦点在于强调二进位制数结构的先天易模型能否规范万物万象。作为邵雍数学学派的主要反对者,王夫之在评论邵雍以加一倍法演先天易时说:?
教童稚知相乘之法则可,而与天人之理毫无可取。使以加一画即加一倍言之,则又何不可加为七画以倍之为一百二十八,渐加渐倍,亿万无穷,无所底止,又何不可哉?不知《易》但言四象生八卦,定吉凶,生大业,初不可损羲爻,益而为四爻,五爻。此乃天地法象之自然,事物通变之定数,不可以算士铢积寸垒,有放无收之小术,以乱天地之纪也。?
邵雍、蔡西山之道,可勿仅以数学名也。始姑就之,天下趋焉;终遂耽之,大道隐焉。(《续春秋左传博议》卷下)
在他看来,先天易仅仅是算博士“铢积寸垒,有放无收”的雕虫小技而已,与大道无涉,也正是由于过分强调二进位制数学特性而失去了诠解大道的资格。?
二、汪莱从p进制角度论证二进制的优越性?
汪莱是清朝乾嘉时期杰出的数学家,也是**古代著名的数学家。著有《衡斋算学》七卷、《衡斋遗书》九卷。因不满考据家因循复古的陈腐风气,郁郁不得志,以致英年早逝。?
当时考据家以非两汉正统为由对邵雍数学学派进行全面否定,而从汪莱数学名著《参两算经》则可以看出他对邵雍观物思想和先天易情有独钟。?
《参两算经》全文不足千字,分为《原始》、《立纲》、《汇奇》、《列偶》、《会归》,最后为《参两数说》,共六部分。文字极为凝炼,其中《原始》、《立纲》、《会归》各仅仅30余字。?
其中《原始篇》曰:
端居观物,情契先天,见象数之纷纭,其可断者不外乎参两,乃著之则以示来者。
此篇为前言,讲明此算经的写作目的。在当时观物之学极为尴尬的形势下,“端居观物,情契先天”八个字包含的情感非同一般。?
《立纲篇》:?
立数在十,算如常法。或上或下,逢身进位。立法少实,即命为法,立法过实,盈实进一。大纲若此,诸数以定。
此为算法总纲,讲任意进制的乘除法及整除性法则。《汇奇篇》和《列偶篇》则分别为奇数进位制与偶数进位制的乘除法及整除性研究。?
《会归篇》是本经的结论部分:?
曰参曰两乃数之原。立数于参,二乘一一。立数于两,一乘不烦。是以生诸数之法而不受裁于法。
通过上面的讨论,结论是二进制乘法口诀最简单,只需一算式,即一乘一等于一,并强调了二、三进位制的优越性,推之为“乃数之原”,旨在阐述他对“参天两地而倚数”的数学理解。?
天津师范大学李兆华教授对汪莱数学著作有深入的研究,他在《汪莱〈递兼数理〉、〈参两算经〉略论》(吴文俊主编《**数学史论文集(二)》)一文的最后指出:
《参两算经》一书,提出了采用各种进位制的原则是“审法与数之宜”以求运算的简便与结果的准确,足见汪氏治算观点之高。汪氏又具体地给出2≤p≤10时各种进位制中的乘除表并深入地讨论了p进制中的“整除性”问题,在中算史上是空前的。p进制的研究是随着本世纪四十年代电子计算机的产生而发展起来的,而**的数学家在电子计算机产生之前一百余年对p进制的运算和理论达到如此熟练与深入,实在是值得骄傲的事情。
最后应该指出,这两篇著作都涉及到《易经》。《易经》究竟给予汪氏怎样的启发?怎样评价《易经》的这种影响?这是**数学史研究中一个带有普遍性的问题。这个问题需要哲学史与数学史工作者共同努力才能给出实事求是的回答,本文姑从略。
尽管在上述论文中,作者刻意回避二进位制问题及相关评论,但是,从汪莱原著中我们不难看出,二进位制是《参两算经》的一个核心而且与邵雍先天易有千丝万缕的关联。?
第五节 从皮亚诺序数公理出**证先天易是完备的二进位制?
邵雍数学学派发现并广泛使用二进位制是不必费多少笔墨就能说清楚的事实,本文的主要目的在于从序数公理出**证邵子先天易是完备的二进位制序数体系。序数体系的建立是抽象数学的基础。邵子先天易是第一个有明确定义的序数体系,也就是第一个抽象数学体系。?
自然数的概念在数学上一直被当做最明显,最基本的概念来应用,直到上世纪末,在数学的公理化方法发展的影响下,才提出“自然数是什么”的问题。基于自然数的两种功能层次,即表达个数的概念和表达顺序的概念,19世纪末出现了著名的康托尔基数公理和皮亚诺序数公理,从数学逻辑的角度对什么是个数和什么是顺序号作出定义。?
大家都知道,个数和顺序都是显而易见的概念。但从文明发展的角度来说,异同概念的出现是理性的起点,个数概念的出现是一个巨大进步,顺序概念的出现又是一个巨大的进步。对个数(基数)和顺序(序数)作出规范定义将大大方便文明史的研究,也有助于抽象数学本身的发展。?
基数就是个数,是最原始的、很直观的数的概念,判断掌握基数概念的标准是只需有一一对应地数个数能力,尚不要求形成整体意识,也不要求有一般的比较概念。自然数的基数理论,即康托尔基数公理,是以集合和一一对应的概念为基础来定义的。由于在定义中不能隐含顺序概念在里面,使用集合的概念来定义是非常巧妙的,但也相当拗口。?
给定两个集合a、b,如果存在一个规则f,对a中的每一个元素a,在b中唯一确定b(即a在f下的像),而b中任一元素b均由a中某一相应元素a唯一确定,那么就说f是a到b的一个一一对应。存在一一对应的两个集合称为等价的,取定一个集合a,把所有与a等价的集合放在一起,作成一个集合的类w,w中所有集合所共有的属性称为a的基数,简言之,类w本身就称为a的基数。集合的基数实际上就是集合中元素的个数。?
自然数的序数理论是利用两个的基本概念第一个(first)与下一个(next)以及四个公理来定义的。第一个通常可以记为1,不过不如记为n0更有普遍意义。所谓自然数(序数),是指满足以下性质的集合n中的元素:?
1)n0是n的一个元,它不是n中任何元的后继者,若n的后继者用n+来表示,则对于n中的任意元n, n+不等于n0。(注:n0是指定的顺序起点而不作证明)。
2)对于n中任意元n, 存在而且仅存在一个后继者n+。
3)对n中任何两个元n和m, 若n+=m+,则n=m.
4)n的一个子集m,若具有以下性质:
① n0属于m;
② 对于任意m属于m,必有m+也属于m;则m=n
皮亚诺公理指出,要建立一个顺序概念首先要选定一个顺序的起点“第一个”(first),其次需要规定一个顺序操作“下一个”(next)或称为“后继者”,有了这两个概念,就能定义一个序列,也就是序数。序数概念是现代数学的基础概念,具有广泛的适用性。?
下面以排队为例对皮亚诺公理进行说明,理论上队列可以无穷长。其中公理一是说:第一个是绝对的,不能存在“第一个”的上一个,比如排队时你排在前面第一个,就意谓着队列中没有比你排在更前面的。?
公理二是说:队列中任何人的下一个必有但也只能有一个,不能多个 。
公理三是说:对任何人来说,如果他后面一个位置的序号已经知道(确定),那么他本身的序号也就定了。?
公理四是说:假如原来队列的第一个另排一行,第一个的“下一个”,“下一个”的“下一个”全部依次跟过来,那么新队列和老队列是等价的。?
这样定义的自然数称序数,以区别前者定义的基数,是专门针对“第几”这个问题而定义的。基数起于感性量的简单同异比较,用于描述感性的、形象的数量,而序数是基数的进一步抽象,是思维进一步发展的产物,用于描述理性的、抽象的关系量。?
各种已知的古代数系,基本上都经过从基数到序数的过程,首先用以表示“几个”,然后才抽象出表示“第几个”的涵义。但除了先天易之外,还没有出现经过定义的序数体系。
专门把表示顺序的序数与表示个数的基数从基本定义上区分开来是数学向抽象化发展的要求,也是抽象数概念产生的基础。邵子先天易就是专门定义的序数体系。为叙述方便,用y表示先天易体系。下面从皮亚诺四个公理出发逐一论证说明先天易符合序数定义,是从序数的角度来定义的。?
有明确的顺序起点定义,先天易从乾(太极)开始演化,是序列的起点。
有明确的次序定义,正如朱熹所说的“其先后多寡,既有次第而位置分明,不费词说,”、“全是天理,自然挨排出来”、“无不曾”、“亦不容”、“智力添助”。又是“未知其所穷”的“有放无收”的系统,这就是说,系统y是依多寡自然挨排即按多寡一个紧挨着一个排出来的排列,元素与元素之间的先后次序是固定不变的,元素的个数又是无穷的,故每个元素y必有固定的唯一的后继者y?+。?
根据y系统上的特征,每一个后继者y+,前面必有唯一固定的元素y。这是显然的。?
设w是y的一个子集,即w中的元素全部是y中的元素,
假定i:乾一(y0)是w中的元素;
ii:w中任意元w,其后继者w+也是w中的元素。
则w与y等价。
证明:从前提w是y的一个子集出发得知,w中每一个元素都是y中元素,不存在属于w而不属于y的元素。?
从假定一得知y序列的第一个元素y0也是w中的元素,y中不可能有在y?0前面的
元素,而w中的元素都是y中的元素,因此w中y?0也是第一个。
根据假定二,w中任意元素的后继者都是w中的元素,从y0出发逐一加一的生成的元素都是w中的元素,同时这本来就是y的定义,所以y是w的子集。又前提中w是y的子集,所以w与y等价。?
由于进位制是自然数自身表达的**,先天易系统y是自然数序数系统,在内部结构上,任意大数均表示为奇偶两个符号的迭加,并利用非零符号所在相对位置的不同表示位值的不同。所以先天易系统y是二进位制自然数体系。为了脱离数量与单位等具体特征的约束,先天易从单纯序数的角度来构建自然数序列,开抽象数学之先声,它的意义必将逐步得到人们的重视。?
第六节 《周易》与二进位制问题散记?
近数十年来,国内否定周易与二进位制有关的运动有两个学术源头,一个是李约瑟《**科学技术史》中综述,另一个是80年代英国e.j.爱顿的一篇短文。之所以称之为运动,那是因为大家似乎都不约而同地隐**对研读原著的不热心甚至鄙视。下面是有关这个问题的三段笔记,以此献诸同好。?
一、葛兰言的碰巧说?
从近现代西方学术界的角度看,自从认识二进位制数之伊始,就与《周易》结伴而行。西方第一篇关于二进位制的文章发表于1703年,是莱布尼兹在《皇家科学院纪录》上发表的,标题为《二进制算术的解说》,副标题为“它只用0和1,并论述其用途以及伏羲氏所使用的古代**数字的意义”,作为对**哲学的介绍加以高度评价。以后周易与二进制问题作为东方文化的一个特色一直引起西方学者的广泛注意,他们对从浩瀚的易图进行研读,得到了很多有益的成果。一直到本世纪二三十年代,几乎没有人对**古代二进位制的发明权表示怀疑或商榷。?
正如李约瑟所说的,“要是在十多年前,这个论题可能到此就结束了。但是晚近的发展表明,莱布尼兹的二进制算术远远不单纯是历史上一桩奇事而已。”近几十年来由于电子技术中的应用发展使某些西方学者对**古代发明二进制这一结论越来越不能接受,于是有个宣判性质的工作由汉学家葛兰言先生给出的,在没有研究或者说没有读懂**古代原始文献的前提下葛先生作了激烈的判决。他说,哪怕是承认六十四卦序与莱布尼兹二进制有一点点最低的共同基础的想法都是理所当然应该摒弃的,因为“发明六十四卦的那些人所关心的只是用长棍和短棍这两种基本原件来形成一切可能的排列与组合。这些一经形成之后,显然有好几种同样合乎逻辑的排列也是可能的。事实上,其中有两种最后获得了极大的重要性,虽然其他排法也不难设计出来。把数学的意义归之于六十四卦,其主要的缺点是,没有什么东西是比任何一种定量计算更远离古代《易经》专家们的思想的了。”李约瑟指出“葛兰言已充分地表明了这一点”。“至于研究用阴爻和阳爻的反复交替组成六十四卦的‘变易’的占卜者,他们可以被认为是在进行简单的二进制算术运算,但是他们在这样做的时候,肯定是并没有认识到这一点的。我们必须要求,任何发明——无论是数学的或是机械的——都应该是有意识地作出来并能供使用的。如果《易经》占卜者不曾意识到二进制算术,而且也未曾加以使用,那么,莱布尼茨和白晋的发现就仅仅具有如下的意义,即在邵雍的《易经》解说中所表现的抽象顺序系统是碰巧与包含在二进制算术中的抽象顺序系统相同而已。邵雍在他的《易经》六十四卦排列中偶然碰到并由莱布尼茨使人意识到的二进制算术,可以说是在一种十分真实的意义上早在它被人发现适合于现代人的大型计算机之前,就已经被用来构造哺乳动物的神经系统了。”?
这里称之为宣判而不是研究,是因为这个工作本身更像是一个武断而措词激烈的宣言而不是研究,是因为他这种对宣判对象邵雍数学学派起码的常识不知道也不屑于涉及的方式更像一个西方传统上的宗教审判。葛氏宣判中涉及的易学常识性笑话就不值得一说了,下面讲讲行文中的数理常识错误。?
葛氏对什么叫排列,什么叫组合,搞不清楚;对什么是二进位制也只有一些感性的印象;当然对排列、组合与序数概念关系问题更是一片模糊。排列是建立序数(自然数)的基础上的抽象的概念,也就是排顺序。其中排列项本身就是序号的代表,从排列本身的意义上说,就是序数,也就是自然数记号。由两种基本符号就可以完全表达的顺序记号系统本身就是二进位制自然数,完全与这两位基本符号的具体形式无关,无论是阴与阳还是长棍与短棍,或者是0与1,都是可以作为二进制基底的等价表示,因为它们是同构的。
组合是在排列概念的基础上进一大步的抽象思维能力,从人类智力发展进化进程上说,要求更高的智力水平,必须相对抽象的分析比较能力和一定的全局概念为基础。就是说,序数概念是排列行为的必然前提,组合概念是排列基础上的智力飞跃。它们都是依从于顺序概念的理性活动,自然是有意识的,离开了对顺序概念的自觉,还能称为排列和组合吗?另外,数学就仅仅等于定量计算么??
为了解释先天易图中的阴爻和阳爻,有学者提出更无稽的畅想:“卦的线条倒不见得代表占卜用的长短棍,而是更多地与自古以来**肯定在使用的算筹有关。因此,这些符号可能是来源于使用一种以5为基的算术,由细线或断线代表其值为1的算筹,而粗线或不断线则代表其值为5的算筹。”这就是李约所说的“更说得通”的巴尔德设想。不知为什么不从原著出发?假如读不懂的话又有什么资格瞎编呢?这就是二三十年前彻底否定**祖先发明二进位制的补台大作,它替葛氏给阴爻和阳爻想出了一条出路,这是邵子或朱子原著中找不到的。于是宣判结束,意见得到统一,莱布尼兹以来几百年的西人都错了,“愚笨”的**古代变易论者怎能和创造奇迹的二进位制相联系呢??
说巴尔德对易学完全不了解,那不是事实,他用二进制转化为普通数字的方法从卦图中“发现了各式各样的幻方”,由于“从《易经》得出的幻方却颇为复杂,因而很难使人相信,**的变易论在他们编排六十四卦时在内心里曾有过任何这样的思想”。这就是李约瑟的观点,当然也是巴尔德的观点。?
以上引用材料均见于李约瑟在《**科学技术史》中对这一问题的争论的总结,下面总结一下葛兰言与巴尔德所代表的学术界的一致性意见:?
a.邵雍的《易经》解说中所表现的抽象顺序系统本身就是二进位制系统。?
b.假如这种顺序关系本身对他们来说是有意义的,也就是说,意识到两符号(即阴爻和阳爻)的组合可以用来表示顺序,甚至已经用来表示顺序,那么他们就已发现了二进位制,或者说,他们对位值和零有了某种理解;?
c.反之,假如不是有意而是碰巧排出来的,他们就没有发现二进位制,也就是说, 并不能用来说明他们对位值和零有了某种理解。?
d.一致性意见是:他们是碰巧排出来的并不是有意用来排序的,所以仅仅是与莱氏不谋而合的抽象顺序系统而已。?
可见关键是意识到还是没意识到这种抽象顺序,亦即意识到与否两符号(即阴爻和阳爻)的组合可以用来表示顺序。答案是显然的,因为这正是先天易的特点。?
其实,要是像他们所说的那样是“碰巧”而非“有意”,那才是大大的奇迹呢!下面我们先算算这种概率。?
“与莱氏的数不谋而合的抽象顺序系统”是指伏羲六十四卦次序图和方位图。实际上图**有三个排序,均符合二进位制法则。每一个碰巧排出的概率均约为2/64!,即大约为1/10??89?,远远低于不可能**的概率要求。假如是“碰巧”而非“有意”排出,则三个排序互为独立**,同时得到的概率约为1/10??267?,当然也是绝对的不可能**。为了帮助形象地理解这个概率,下面作个说明。根据相对论和量子力学的共同要求,宇宙中有静质量的基本粒子总数上限是10??80?,宇宙从生到灭约有150亿(1.5×10??10?)年,一年约有三千万(3×10?7)秒,人生百年约有3×10?9秒,整个宇宙“一生”约有5×10??17?秒。可见有些话说起来轻巧,其实并没那么简单,假设整个宇宙从诞生到灭亡的所有时间内都在按葛兰言所说的方法进行无意识的排序活动,也不可能为碰巧说提供概率上的保证。因此,先天易图只能是有意的而非碰巧的排列结果。实际上大量的古代文献雄辩地证实了这一点,如图的名称就是卦序图或次序图,即已直截了当点明图是次序图,用于排序,并说明是用“一分为二,二分为,四分为八……”的方式构造的,既然是排次序,图中符号系列即是序号。这里从概率的角度加以论证是为了说明即使在没有其他文献的情况下也不能轻易下“碰巧”的结论。另外葛氏等人把作为人类智能活动的产物与自然存在混为一谈,进行偷换概念也是相当不合适的。按照他们的逻辑,早在牛顿发现万有引力定律之前的150亿年,万有引力定律“可以说是在一种十分真实的意义上”“就已经被用来构造”宇宙中物质系统啦。?
二、爱顿用分离表解释先天图?
还有一位英国的e.j.爱顿在80年代为邵雍先天图的产生设计了一个极有创造性的莫名其妙的明暗两种矩形投影分离表,据称用这种投影分离表可以复原先天图,这位富有想象力的学问家于是断言,尽管白晋寄给莱布尼兹的木版伏羲六爻排列图“确实表现出与某种数的体系的相似性”,但是,它“是邵雍利用分离表复原而成的。明暗两种矩形分别加以区别的伏羲排列图的六爻组成,并不能使人想到它与容易理解的数体系的联系。”当时权威学术刊物的《科学史译丛》随即进行了翻译介绍,成为十几年来的一个学术棍子,有的权威人士甚至认为应把有关周易与二进位制的讨论当成国耻来看待。e.j.爱顿的结论成了最新的权威结论,在各种文献中的引证不下千次,竟没有一个引证中对这个莫名其妙的分离表表示怀疑,乐于以此为评判标准甚至终极真理的**学者,似乎并不乐于花半小时的时间查证一下相关的古代原著。也许是在一段时期内,对学术问题进行缺席审判早已为大家所熟视了,而且怕踩高压线、跟风附和似乎已经形成了惯性,老成之士当然也乐于继续惯下去。?
三、莱布尼兹说了些什么?
其实,莱布尼兹本人对二进制的研究到底到了什么程度,诸公很少论及。英国哲学史学会秘书、莱布尼兹学会负责人麦唐纳·罗斯教授的教科书《莱布尼兹》第二章《数学》的第二节《二进位制算法》中在充分介绍和高度评价二进制本身的伟大意义之后指出,二进制对莱布尼兹来说“除了一个非常模糊的草稿而外”,更重要的意义是“神而上的”,而且与他的发明计算器算法毫无关系。这个“非常模糊的草稿”本身罗斯并没有太大兴趣,于是他用不少笔墨引用莱布尼兹的“神而上”文献。现摘如下:?
或许只有一个东西能够独立地被设想,那就是神本身——还有无,或者说不存在。这可以通过一个极好的类比弄清楚,……[他概略地论述了二进制记数法,并继续说:]我这里不打算论述这种体系的巨大用处;只要指出所有的数通过一和无的方式加以表达是何等的美妙就足够了。然而,尽管事物隐秘的秩序使一切事物都产生于纯存在和无这点成为自明的,而人们并无希望在此生中就能达到这种秩序,但是对观念的分析来说,进行证明真理所必须的程度也就足够了。?
罗斯接着写道:?
莱布尼兹对这个思想感到很骄傲,以致他打算用一个刻有铭文的纪念章来纪念它。铭文是:“g.w.莱布尼兹所发现的创造物的典型。”以及“为了从无中派生出一切来,一就够了。”
罗斯在总结性评价中说,“仅就与莱布尼兹有关而言,这一发现最重大的意义是形而上学方面的,或者更确切地说是神而上的,因为它说明了整个宇宙如何可以看成是由数所构成的。”对邵雍数学学派比较熟悉的专家不难发现,上述观点似曾相识,两者有没有内在联系,还须请熟悉中西比较的专家从更大视角加以研究。?
柯 资 能(**科学技术大学 科技史与科技考古系,安徽 合肥 230026)  (原载《周易研究》2001年第3期)

佚名
2024-11-15 09:18:20
最佳回答
类似问题(10)
  • 佚名
    2024-11-15 08:52:06

    受易经启发而提出二进制的吗

    目前尚无可靠资料表明莱布尼茨发明二进制的时候受到了易经八卦图的启发或者影响,因此,目前一般认为,莱布尼茨发明二进制与八卦图反映了二进制特点,是两个不同文明各自独...

  • 佚名
    2024-11-15 12:03:45

    《易经》第四十四卦 怎么理解?

    第四十四卦 姤姤,是相遇的意思,是“怀才不遇”的“遇”,同时当然也是“高山流水遇知音”的“遇”。《论语》里有一句“有朋至远方来,不亦乐乎”,其实说的是志同道合的...

  • 佚名
    2024-11-15 21:47:29

    易经数理学会杨万勇

    你所说的易经数理学会并非什么官方或者权威性易经机构。应该是些野路子。至于会长是不是你所说的这个人。非权威性的机构是查不到的,查到意义也不大。国内最新公布的关于易...

  • 佚名
    2024-11-15 17:15:08
  • 佚名
    2024-11-15 15:58:33

    周易 第二十四卦

    出外不远就返回,比喻能时时反省,严于修身。说明无事。圆满而归之所以吉利,是能够去位让贤。吉虽然愁眉苦脸地回来,但已脱离危险,理应没有灾祸。无灾就是吉中途独自返回...

  • 佚名
    2024-11-15 23:46:57

    四柱,梅花易数,六爻,奇门遁甲,紫微斗数,六壬等,哪种易数比较好学,谢谢。

    学霍斐然先生的(小成图)如果是有易学基础的朋友半小时就会了

  • 佚名
    2024-11-15 19:59:47

    经典易学的英文歌

    01.sealed with a k**s 奥斯卡【学会了这首肯定能得冠军】02.groove coverage - far away from home【知名...

  • 佚名
    2024-11-15 08:00:00

    二进制与易经真的有联系么

    什么叫生拉硬拽,这就是了,易经用十进制计数,没听说用二进制计数和运算过

  • 佚名
    2024-11-15 08:00:00

    简单易学的古典舞?

    网上有《船歌》舞蹈教学。你可以去土豆查视频。那个可以改背景音乐。动作相当简单。很慢。。

  • 佚名
    2024-11-15 08:00:00

    数理易学的介绍

    数理易学,是莱布尼兹所发明之计算机基于易学二进位思想,即0与1。莱布尼兹受**易经八卦的影响最早提出二进制运算法则,创立了符号逻辑学的基本概念。