关于数学的所有知识
“O”的自述
人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。可你们知道吗?我也有许多实实在在的意义。
1.我表示“没有”。在数物体时,如果没有任何物体可数,就要用我来表示。
2.我有占数位的作用。记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。
3.我表示起点。直尺、秤的起点都是用我来表示的。
4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。
5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。如:7.00、7.0、7的精确度是不同的。
6.我不能做除数。让我做除数可就麻烦了,因为我做除数是没有意义的。
以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。
为什么电子计算机要用二进位制
由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢?
这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。
二进位制所需要的记数的基本符号只要两个,即0和1。可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。
二进位制在计算机内部使用是再自然不过的。但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为@@100000。为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。
二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。
为什么时间和角度的单位用六十进位制
时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢?
我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60……
数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。
这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。
这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。
长度单位的自述
一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”首先从会场中央站起来一个说道:“我叫‘引’,是中国籍的单位长度,中国古代《汉书:律历志上》有我的名字,所以我的年龄很大啦!是中国籍古时十丈为一引,今为‘市引’的简称,1公里(千米)=30(市)引。”说完就坐下了。接着从会议室一个角落站起一个“单位”大声喊道:“我叫‘码’,是英籍长度单位.英语‘yard’的译名,1码=3英尺,1英里=1760码。与公制及市制的关系是:1码=0.9144米=2.743市尺。”“码”发言完后,就一个接一个的说开了。“我叫‘节’,我是无国籍‘人士’,也可以说,每一国都是我的国籍,因为我是国际通用的航海速度单位,也可用于度量水流速度和水中兵器(如鱼雷)的速度。我是离不开长度的,海里是我的爸爸,小时是我的妈妈。1节=1海里/小时,例如,某船相对于静止水面的速度为15海里/小时,那么它的航速就是15节”.“我叫‘链’,生长在海上,是海上计量短距离的一种专用单位,我是一海里的十分之一。”“我的名字大约谁也没听说过吧!我叫‘浔’;海洋测量中计量水深的专用单位,也可以说是无国籍人士,1浔=1/100链=1/1000海里=1.852米。”“我叫‘町’,是日本籍,也是一种长度单位,是国际长度等单位大家庭中的一员,只是我的面孔怪僻。所以大家见的不多(町=1/36日里,1公里=9.167町=0.2546日里)。”大家发言完后,“公里”说:“很好!我们初次见面,大家认识了一下,我们快回各自的岗位吧!继续发挥我们各自的伟大作用。”
人身上的“尺子”
你知道吗?我们每个人身上都携带着几把尺子。假如你“一拃”的长度为8厘米,量一下你课桌的长为7拃,则可知课桌长为56厘米。如果你每步长65厘米,你上学时,数一数你走了多少步,就能算出从你家到学校有多远。身高也是一把尺子。如果你的身高是150厘米,那么你抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。要是你想量树的高,影子也可以帮助你的。你只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。这是为什么?等你学会比例以后就明白了。你若去游玩,要想知道前面的山距你有多远,可以请声音帮你量一量。声音每秒能走331米,那么你对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。学会用你身上这几把尺子,对你计算一些问题是很有好处的。同时,在你的日常生活中,它也会为你提供方便的。你可要想着它呀!
阿拉伯数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符号。
九 九 歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。
数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
也有人说,卖酒的商人用"-"表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在"-"上加一竖,意思是把原线条勾销,这样就成了个"+"号。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
平方根号曾经用拉丁文"Radix"(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用"√"表示根号。"r"是由拉丁字线"r"变,"--"是括线。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
世界杯中的数学问题
当韩日世界杯进行得如火如荼的时候,大家有没有发现世界杯中有许多数学问题。不信,你往下看。
在世界杯小组赛上,每四个队进行单循环比赛,每场比赛胜队得3分,负队得0分,平局两队各得1分。小组赛结束后,总积分高的两队出线,进入下一轮比赛。如果总积分相同,还要按进一步的规则排序。
问题一:
一个队为了晋级下一轮,至少要积几分才能保证必然出线?
4个队单循环赛要赛6场,每场比赛最多产生3分,6场比赛最多产生18分。
若某队积6分,则剩下12分,可能有另两个队也各得6分,这样就要按进一步规则排序,因此该队有可能不出线。
我想出来了:若一个队积7分,则剩下11分,这样另外三个队中不可能再有两个队积分等于或者超过7分,这样该队必然出线。因此一个队为了晋级下一轮,至少要积分7分才能保证必然出线。
问题二:
一个队只积3分,这个队有可能出线吗?
有可能。6场比赛都是平局,4个队都只得了3分,按进一步规则排序,该队如果处于前两位,就有可能出线。
还有一种情况,大家能想出来吗?
想一想:(1)一个球队积5分,该队能出线吗?为什么?
(2)一个球队积2分,该队能出线吗?为什么?
小朋友,你们在观看世界杯比赛的过程中,有没有想过这些问题呢?其实,生活中数学无处不在,只要大家留心观察,你会有不小的收获的。
人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。可你们知道吗?我也有许多实实在在的意义。
1.我表示“没有”。在数物体时,如果没有任何物体可数,就要用我来表示。
2.我有占数位的作用。记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。
3.我表示起点。直尺、秤的起点都是用我来表示的。
4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。
5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。如:7.00、7.0、7的精确度是不同的。
6.我不能做除数。让我做除数可就麻烦了,因为我做除数是没有意义的。
以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。
为什么电子计算机要用二进位制
由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢?
这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。
二进位制所需要的记数的基本符号只要两个,即0和1。可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。
二进位制在计算机内部使用是再自然不过的。但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为@@100000。为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。
二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。
为什么时间和角度的单位用六十进位制
时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢?
我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60……
数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。
这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。
这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。
长度单位的自述
一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”首先从会场中央站起来一个说道:“我叫‘引’,是中国籍的单位长度,中国古代《汉书:律历志上》有我的名字,所以我的年龄很大啦!是中国籍古时十丈为一引,今为‘市引’的简称,1公里(千米)=30(市)引。”说完就坐下了。接着从会议室一个角落站起一个“单位”大声喊道:“我叫‘码’,是英籍长度单位.英语‘yard’的译名,1码=3英尺,1英里=1760码。与公制及市制的关系是:1码=0.9144米=2.743市尺。”“码”发言完后,就一个接一个的说开了。“我叫‘节’,我是无国籍‘人士’,也可以说,每一国都是我的国籍,因为我是国际通用的航海速度单位,也可用于度量水流速度和水中兵器(如鱼雷)的速度。我是离不开长度的,海里是我的爸爸,小时是我的妈妈。1节=1海里/小时,例如,某船相对于静止水面的速度为15海里/小时,那么它的航速就是15节”.“我叫‘链’,生长在海上,是海上计量短距离的一种专用单位,我是一海里的十分之一。”“我的名字大约谁也没听说过吧!我叫‘浔’;海洋测量中计量水深的专用单位,也可以说是无国籍人士,1浔=1/100链=1/1000海里=1.852米。”“我叫‘町’,是日本籍,也是一种长度单位,是国际长度等单位大家庭中的一员,只是我的面孔怪僻。所以大家见的不多(町=1/36日里,1公里=9.167町=0.2546日里)。”大家发言完后,“公里”说:“很好!我们初次见面,大家认识了一下,我们快回各自的岗位吧!继续发挥我们各自的伟大作用。”
人身上的“尺子”
你知道吗?我们每个人身上都携带着几把尺子。假如你“一拃”的长度为8厘米,量一下你课桌的长为7拃,则可知课桌长为56厘米。如果你每步长65厘米,你上学时,数一数你走了多少步,就能算出从你家到学校有多远。身高也是一把尺子。如果你的身高是150厘米,那么你抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。要是你想量树的高,影子也可以帮助你的。你只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。这是为什么?等你学会比例以后就明白了。你若去游玩,要想知道前面的山距你有多远,可以请声音帮你量一量。声音每秒能走331米,那么你对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。学会用你身上这几把尺子,对你计算一些问题是很有好处的。同时,在你的日常生活中,它也会为你提供方便的。你可要想着它呀!
阿拉伯数字
在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符号。
九 九 歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。
数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
也有人说,卖酒的商人用"-"表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在"-"上加一竖,意思是把原线条勾销,这样就成了个"+"号。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
平方根号曾经用拉丁文"Radix"(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用"√"表示根号。"r"是由拉丁字线"r"变,"--"是括线。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
世界杯中的数学问题
当韩日世界杯进行得如火如荼的时候,大家有没有发现世界杯中有许多数学问题。不信,你往下看。
在世界杯小组赛上,每四个队进行单循环比赛,每场比赛胜队得3分,负队得0分,平局两队各得1分。小组赛结束后,总积分高的两队出线,进入下一轮比赛。如果总积分相同,还要按进一步的规则排序。
问题一:
一个队为了晋级下一轮,至少要积几分才能保证必然出线?
4个队单循环赛要赛6场,每场比赛最多产生3分,6场比赛最多产生18分。
若某队积6分,则剩下12分,可能有另两个队也各得6分,这样就要按进一步规则排序,因此该队有可能不出线。
我想出来了:若一个队积7分,则剩下11分,这样另外三个队中不可能再有两个队积分等于或者超过7分,这样该队必然出线。因此一个队为了晋级下一轮,至少要积分7分才能保证必然出线。
问题二:
一个队只积3分,这个队有可能出线吗?
有可能。6场比赛都是平局,4个队都只得了3分,按进一步规则排序,该队如果处于前两位,就有可能出线。
还有一种情况,大家能想出来吗?
想一想:(1)一个球队积5分,该队能出线吗?为什么?
(2)一个球队积2分,该队能出线吗?为什么?
小朋友,你们在观看世界杯比赛的过程中,有没有想过这些问题呢?其实,生活中数学无处不在,只要大家留心观察,你会有不小的收获的。
佚名
2024-11-16 11:20:11
类似问题(10)
-
佚名2024-11-16 12:04:26
问关于企鹅的知识
答企鹅的“团队精神”,这种精神要求每一只企鹅都不能脱离集体,每一个集体都要关注每一个个体企鹅,企鹅之间只有共进共退才能形成一个团队、才能产生令对手无法“下手”的有...
-
佚名2024-11-16 09:25:21
问关于刺猬的知识?
答刺猬是属于哺乳动物中的猬形目。最普遍的刺猬种类是学名为 欧洲刺猬 的普通刺猬,广泛分布在欧洲、亚洲北部,在中国的北方和长江流域也分布很多。
-
佚名2024-11-16 08:00:00
问关于口腔知识的网站有没有?
答口腔常识网还有各种口腔论坛牙科之窗KQ88等
-
佚名2024-11-16 08:00:00
问关于月亮的知识有哪些
答月亮距离地球约38万公里月亮上的重力只有地球上的约六分之一月亮永远只有一面对着地球月亮运转到地球和太阳之间就会在地球局部产生日食现象
-
佚名2024-11-16 08:00:00
问关于邮票的知识
答邮票(Postage stamp)是邮政机关发行,供寄递邮件贴用的邮资凭证。邮票是邮件的发送者为邮政服务付费的一种证明,发送者将邮票贴在信件上,再由邮局盖章销值...
-
佚名2024-11-16 08:00:00
问学好编程要学那些数学知识??
答这要看你的运用领域。如果你只是做一些数据库管理,关系管理一类的软件。那么高中数学就足够了。如果你要做一些统计,也需要相关的统计学知识。如果你要做一些详细的算法,...
-
佚名2024-11-16 08:00:00
问数学知识都有哪些?
答数学知识包罗万象,上到天文地理,下至鸡毛蒜皮都涉及数学知识,不过最基本的不外是幼儿园、小学所教内容:认识数字大小、加减乘除四则运算,最多加上分数、小数的知识,基...
-
佚名2024-11-16 08:00:00
问关于企鹅的知识!!!!!!!!!!!!~~~~~~~~~~~~~~~~~~~~~
答捕食回来的企鹅父母看上去的确已经吃饱了.但是这些充足的食物并不仅为了填饱自己的肚子.为了使自己的宝宝也不挨饿,它会把部分食物从胃里吐出来,这种婴儿食品还混合着它...
-
佚名2024-11-16 08:00:00
问关于月球的科学知识,至少三条
答1、月球,俗称月亮,古时又称太阴、玄兔,是地球唯一的天然卫星,并且是太阳系中第五大的卫星。 2、月球的直径是地球的四分之一,质量是地球的1/81。重力加速度是...
-
佚名2024-11-16 08:00:00
问关于魔术知识
答你想问魔术的什么知识呢?? 就让我来给你答案吧 我是7岁小孩叶子荷女的 全班三号学生 也就是全班学习最好的 那么我来给你答案莪这侕ㄡ所侑舂晚魇ポの揭秘: ...
风水
起名
网名
- 1 清字好听网名
- 2 惆怅的网名
- 3 qq网名男生孤独带符号网名大全
- 4 QQ可复制网名
- 5 淘宝页面的昵称不能改么
- 6 4399男生昵称大全集
- 7 玉藻前昵称
- 8 2019年做生意最好的微信昵称
- 9 关于于姓的微信昵称
- 10 小影没有被注册的昵称
说说
- 1 个性签名心好难受
- 2 关于鹿晗的qq签名韩文
- 3 早安心说说
- 4 妈妈对孩子的付出说说
- 5 稻子说说
- 6 喜欢字母哥的说说
- 7 无奈的现实 不敢想象的说说
- 8 辛苦钱心情说说
- 9 不醉美酒醉美人的说说
- 10 霸气个性拽说说心情短语